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Abstract

The input to the METRIC MAXIMUM CLUSTERING PROBLEM WITH GIVEN CLUSTER SIZES consists of a complete graph
G = (V, E) with edge weights satisfying the triangle inequality, and integers cy, ..., cp. The goal is to find a partition of V into
disjoint clusters of sizes cy, ..., cp, maximizing the sum of weights of edges whose two ends belong to the same cluster. We
describe an approximation algorithms for this problem with performance guarantee that approaches 0.5 when the cluster sizes are

large.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we approximate the METRIC MAXI-
MUM CLUSTERING PROBLEM WITH GIVEN CLUSTER
SIZES. The input for the problem consists of a com-
plete graph G = (E, V), V = {1, ..., n}, with nonneg-
ative edge weights w(i, j), (i, j) € E, that satisfy the
triangle inequality, and cluster sizes ¢y, ..., cp, Where
Zf;l ¢; < n. The problem is to partition V into sets of
the given sizes, so that the total weight of edges inside
the clusters is maximized.

In [3] we gave a approximation algorithm whose er-
ror ratio is bounded by ﬁ = (.353. In [4] we improved

this result for the case in which cluster sizes are large.
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In particular, when the minimum cluster size increases,
the performance guarantee increases asymptotically to
0.375. Special cases, with and without the metric as-
sumption, were considered in [1,2,5,6].

In this paper we present a randomized (% — %)-ap—
proximation algorithm for the problem, where k is the
size of the smallest cluster. Thus, for large clusters the
bound is asymptotically %, as the best known asymp-
totic bound for the same problem but with identical
cluster sizes [2].

A p-matching is a set of p vertex-disjoint edges in
a graph. A greedy p-matching is obtained by sorting
the edges in non-increasing order of their weights, and
then scanning the list and selecting edges as long as they
are vertex-disjoint to the previously selected edges, and
their number does not exceed p. In a graph with k ver-
tices, a perfect matching has k/2 edges if k is even, and
(k —1)/2 edges if k is odd. For a matching M we de-
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note by V (M) its vertex set and by E(V (M)) the edges
in the subgraph induced by V(M). For a set of edges
F we denote by w(F) the sum of weights of the edges
in F. We will use the following property on a perfect
matching in a metric:

Lemma 1. Consider a complete graph G' = (V', E')
with k vertices, and a metric w,, e € E'. Let M’ be a
perfect matching on G'. Then w(M') < %w(E’).

Proof. Suppose first that k is even. By the triangle
inequality, w(v,a) + w(v,b) = w(e) for every e =
{a,b} € M’ and v € G’ \ e. Summing over all such
v and e gives 2[w(E") — w(M")] = (k — 2)w(M'), or
w(M') < 2w(E’).

Similarly, if k& is odd then we sum twice the edges
incident with the vertex u that does not belong to M’ to
obtain 2[w(E(V(M")) —w(M")] +2 ZUGV(M,) w(u, v)
> (k — Dw(M') giving w(M') < ZHw(E). O

Fori < in/2], we denote by M; a maximum i-mat-
ching. Thus, |V (M;)| =2|M;|.

Lemma 2. It is possible to choose the maximum match-
ings {M;} so that V(M) CV(Mz) C--- CV(Mn)2))-

Proof. The proof is by induction on i. Suppose that
there exists v € M; \ M;;1, then M; U M; ;1 contains an
alternating path P with end vertex v. In particular, |P N
M| =2 |PN M| If |PN M| =|PN M| then by
the optimality of M; and M, these two sets must have
identical weight. We can swap the edges of P N M; 1
by those of P N M; and obtain a new maximum (i + 1)-
matching that uses v. If {P N M;| =P N M| +1
then there must be another alternating path P’ such that
|[P"NM;|+1=|P N M;;1]. Again, by the optimality
of M; and M; ;| the weight of (PN M;)U (P'NM;) and
(P N M; 1)U (P’ N M;;1) must be the same. We can
swap the edges in both paths to obtain a new maximum
(i + 1)-matching that uses v. Repeating this step, we
end up with a maximum (i 4+ 1)-matching whose vertex
set contains V(M;). O

2. The algorithm

Let the cluster sizes be ordered so that ¢y > - -- > ¢p.
Denote g = |c1/2].

Algorithm Merric is presented in Fig. 2. The algo-
rithm partitions V into layers, Ly, ..., Ly+1. The last
layer, Ly 41, consists of a single vertex for each of the
odd-sized clusters. Each of the first g layers consists
of pairs of vertices, one pair for each active cluster.

Cy Ca Cs Cy

o @ ®

19 @ 00 00
19 @ 00 00
“@ @

Fig. 1. The layer structure: An example with n = 30, (cq,...,
cq) = (11,8,8,3), (ry,..., rs) = (1,3,3,3,4), (my,..., ms) =
(1,4,7,10, 14), q =5, and Sodd = {1,4}.

A cluster is active if the number of yet unassigned ver-
tices (rounded down to an even integer) for this cluster
is maximal among all clusters.! The number of active
clusters grows during the general (that is, excluding
the last) steps of the algorithm, till they all become
active. During the jth iteration, the algorithm com-
putes a maximum matching of size m;. The increase,
ri =mj —m,_1, in the size of this matching, is equal
to the number of active clusters. The newly used ver-
tices, Lj =V (Mpm;)\ V(Mp;_,), are distributed among
the active clusters, two to each cluster. This distribu-
tion is done randomly. When the algorithm terminates,
all clusters reach their sizes. Fig. 1 illustrates the layer
structure.

Let W; = w(Mp;) denote the weight of the maxi-
mum m ;-matching.

The main step of the algorithm randomly distributes
pairs of vertices from the new layer among the active
clusters. The next lemma gives a lower bound on the
expected weight added to the solution by this allocation.

Lemma 3. Consider ve Ljyy, j€{l,...,q —1}. Let
oy, be the expected weight of the edges connecting v and
vertices from V(M,, ;) inthe cluster to which v is added.
Then, ay = W;/rjq1.

Proof. Consider an edge {v,u} where u € V(Mp,).
The probability that this edge contributes its weight to
ay is 1/r; 41 since there are r; 11 active clusters and v is
inserted to each of them with equal probability. There-
fore,

av=—1— Z w(v, u). €]

-
j+1 ueV (M)

¢ 1 is always active and therefore the number of such layers is g.
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Metric
input

1. A complete undirected graph G = (V, E) with a metric w(e), e € E.

2. Integers ¢y 2> ---
returns
Clusters Cy, ...,
begin
q:=lc1/2].
Ci=8,i=1,...,p

a; :=2|¢;/2],i=1,...p.
Sodd = [i: ai =¢; — 1].
mq :=0.

forevery j=1,..., q

rj :=max{i: a; = a1}. [Clusters C;

m; :=m_,-_1+rj.

Zcpsuchthat Y, ¢; <

Cp such that [C;| = ¢;.

VI

..... C, ; are active.]

Compute a maximum m j-matching Mmj such that V(Mmj_l) C V(Mmj ).
L;:= V(M,,,j) \ V(Mmj_l). [L; is alayer.]
Randomly partition L ; into pairs and add one pair to each active cluster.

a;:=a; —2,i=1,...,r
Randomly select a yet unused vertex to each C;, i € Sgq4q-
return Cy,...,Cp.
end Metric

Fig. 2. Algorithm Metric.

Consider an edge ¢ = {a, b} € Mp,;. By the triangle
inequality, w(v, a) + w(v, b) > w(e). Summation over
e € My,; gives

Z w(v,u) > W;.

ueV(M,,,j)

With (1), this inequality proves the claim. O

Consider an optimal solution OPT with clusters
01,...,0p of sizes cy, ..., cp, respectively. For i =
1,...,pand j=1,...,1ci/2], let G;; be a greedy
j-matching on O; such that G;1 C --- C G | /2)-
Let w(Gi,;) denote the weight of G; ;, and let ¢; ; =
Gij \ Gi j—1, be the jth edge added to the greedy
matching in O;.

Lemma 4. Consider a vertex v € O; \ V(G; ;). Let
By denote the weight of the edges connecting v and
V(Gi,j). Then, ﬁv é 2w(G,-,j).

Proof. Consider an edge e = {a, b} € G; ;. Since G; ;
is a greedy matching, w(a, b) = w(v, a), w(v, b), and
thus w(v, a) + w(v, b) < 2w(a, b). Therefore,

Bu= Y. w )<2 Y wle)

fEV(G,"j) eEG[‘j
= 2w(G,-,j). |

Theorem 1. Let k = ¢, > 6. Algorithm Metric returns a
(% - %)—approximation.

Proof. Let apx denote the expected weight of the solu-
tion returned by the algorithm. Then,

g—1 g—1

apx>z Z oy = ZerH

Jj=lvelLjy

2)

The first inequality follows since the summation is over
a subset of the edges of the approximate solution. The
second inequality follows from Lemma 3 and since
ILjs1l=2rj11.

Let GR = Uf;l Gi,|ci/2)> and for i € Soqq let {v;} =
V(0i)\ V(Gi,|c; 2)) be the vertex left out by the greedy
algorithm in O;. Denote by opt the value of an optimal
solution. Then,

p lei/2]-1
w=Y 3 X b+ T hutwiaw

i=1 j=1 vee; jq) i€80dd
p lei/2]-1

<2 2 X WG
i=1 j=1 veejq
+ D 2w(Gije/2)) + w(GR)

i€Sodd

p lei/2]-1

<Y ) 4w(Gij)+3w(GR)
i=1  j=1
g—1

<4Y W+ 3w(GR). 3)

j=1
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The equality holds since the summation over all 8, adds
up the total weight of edges in OPT except for those
in GR. The first inequality follows from Lemma 4. The
second inequality follows from the definition of GR and
since each e; ; has exactly two vertices. The third in-
equality is proved as follows: Denote by v; ; the num-
ber of times, from the first j iterations, that cluster i
was active.2 Denote Gj= U Gi.Vi,j (where G; o =0).
Thus, G; is an m;-matching that contains from each
cluster a greedy matching with the same number of ver-
tices as it contains after the jth iteration of Algorithm
Metric. Since G is an m j-matching, and M, ; is a max-
imum weight m ;-matching, w(G;) < w(Mpn;) = W;.

Therefore, Y ;_, 251/121—1 w(G; j) = Z‘j;: w(G;) <

-1
Using Lemma 1, we get that

2 2
w(Gi,\¢;/2)) < ;w(Oi) < ;w(oi),
I3

and therefore

2 For example, in Fig. 1 we have v} | =1 but v ] =v3 ] =
v4,1 =0. Also, v 3 =2,v2 2 = 1, etc.

14
2
w(GR) = ;w(ci,mm) < popt.

Substitution in (3) gives opt(1— $) <4 Y92} W;. With

(2) this gives apx > (% — %)opt. O

References

[1] T. Feo, O. Goldschmidt, M. Khellaf, One half approximation al-
gorithms for the k-partition problem, Oper. Res. 40 (1992) S170-
S172.

[2] T. Feo, M. Khellaf, A class of bounded approximation algorithms
for graph partitioning, Networks 20 (1990) 181-195.

[3] R. Hassin, S. Rubinstein, Robust matchings, SIAM J. Discrete
Math. 15 (2002) 530-537.

[4] R. Hassin, S. Rubinstein, Approximation algorithms for the metric
maximum clustering problem with given cluster sizes, Oper. Res.
Lett. 31 (2003) 179-184.

[5] R. Hassin, S. Rubinstein, An approximation algorithm for maxi-
mum triangle packing, in: Proc. ESA 2004, in: Lecture Notes in
Comput. Sci., vol. 3221, Springer, Berlin, 2004, pp. 395-402.

[6] R. Hassin, S. Rubinstein, A. Tamir, Approximation algorithms for
maximum dispersion, Oper. Res. Lett. 21 (1997) 133-137.



